Predicting Protein–Protein Interactions Using Symmetric Logistic Matrix Factorization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Drug–Target Interactions Using Probabilistic Matrix Factorization

Quantitative analysis of known drug-target interactions emerged in recent years as a useful approach for drug repurposing and assessing side effects. In the present study, we present a method that uses probabilistic matrix factorization (PMF) for this purpose, which is particularly useful for analyzing large interaction networks. DrugBank drugs clustered based on PMF latent variables show pheno...

متن کامل

Predicting drug-target interactions by dual-network integrated logistic matrix factorization

In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matr...

متن کامل

Logistic Matrix Factorization for Implicit Feedback Data

Collaborative filtering with implicit feedback data involves recommender system techniques for analyzing relationships betweens users and items using implicit signals such as click through data or music streaming play counts to provide users with personalized recommendations. This is in contrast to collaborative filtering with explicit feedback data which aims to model these relationships using...

متن کامل

Multi-Task Clustering using Constrained Symmetric Non-Negative Matrix Factorization

Researchers have attempted to improve the quality of clustering solutions through various mechanisms. A promising new approach to improve clustering quality is to combine data from multiple related datasets (tasks) and apply multi-task clustering. In this paper, we present a novel framework that can simultaneously cluster multiple tasks through balanced Intra-Task (within-task) and Inter-Task (...

متن کامل

Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization

MOTIVATION Identifying interactions between drug compounds and target proteins has a great practical importance in the drug discovery process for known diseases. Existing databases contain very few experimentally validated drug-target interactions and formulating successful computational methods for predicting interactions remains challenging. RESULTS In this study, we consider four different...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Chemical Information and Modeling

سال: 2021

ISSN: 1549-9596,1549-960X

DOI: 10.1021/acs.jcim.1c00173